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Abstract 

The model problem of a heat generating fluid flowing through a finite length pipe is investigated analytically to study 
means of controlling the onset and development of thermal runaway. The heat source Q within the fluid is modeled as 
a linear function of the temperature and it is shown that, when Q is sufficiently large, the temperature will, in general, 
grow exponentially in time, i.e., thermal runaway will occur. However, even when this is the case, it is shown that 
thermal runaway can be prevented by imposing certain conditions on : (1) the initial temperature distribution ; (2) the 
time dependent temperature of the ambient fluid surrounding the pipe; or (3) the time dependent boundary conditions. 
The results are discussed and are illustrated by several examples. 0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 

A 
a 

; 
h 
k 
L 
m 
P 

4 
Q 

cross-sectional arca 
non-dimensional amplitude 
specific heat 
eigenfunction 
heat transfer coefficient 
heat conduction coefficient 
length of pipe 
heat source coefficient 
periphery of pipe 
heat source coeffic:lent 
internal heat generation per unit volume 

Q exp exponential moldel of internal heat generation per 
unit volume 
Qllnear linear model of internal heat generation per unit 
volume 
T time 
TO initial time 
t nondimensional time, k(T- TJ/pcL’ 
u nondimensional temperature, (0 - &J/O, 
Uo(t), U,(t) specified boundary temperatures 
V constant velocity of the fluid in the pipe 
X distance from pipe inlet 
x nondimensional distance, X/L. 

* Corresponding author. 
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Greek symbols 
c( one-half the Peclet number, pcLV/(2k) 

B PI-B* 
j?1 heat source parameter, mL’/k 
bz convective sink parameter, hPL2/kA 

Y ?I+?2 
y, external heat source parameter, qL2/k0, 
yz ambient temperature parameter, 
hPL*(B, - Q,)/(kA&) 

coefficient in the model Qexp 
fluid temperature 
ambient temperature 
inlet temperature 
exit temperature 
constant reference temperature 

eigenvalue 
density 
initial temperature 
nondimensional initial temperature, [m(x) -&l/O, 
nondimensional frequency. 

1. Introduction 

The variation and distribution of temperature within 
a solid or fluid material, in which heat is being generated 
at a rate which depends on the temperature, is a subject 
of considerable technical importance. This situation com- 



2980 J. Geer, J. FiDojInt. J. Heat Transfer 41 (1998) 2979-2990 

monly arises when the local temperature interacts with 
the mechanism causing the generation of heat. Examples 
include internal chemical reactions in a shock-com- 
pressed material [l], electrical energy dissipation within 
solid dielectrics in regions where the electrical resistance 
changes with temperature [2], electrochemical reactions 
producing heat in battery systems [3], heating of ceramics 
with microwave energy [4], heat generation due to the 
nonradiative recombination of minority carriers in semi- 
conductor lasers [5], and the chemical reaction carried 
out in a fixed-bed flow reactor [6]. These examples, as 
well as many others, have in common the feature that 
heat is being generated at a rate which depends upon the 
temperature. In such cases, a major topic of interest is 
the prediction of the temperature distribution and the 
condition which causes the temperature to increase in an 
unbounded fashion, i.e., the determination of the con- 
ditions that can cause thermal runaway. 

The determination of conditions which set limits for 
the temperature to remain bounded and approach a ste- 
ady state is of technical interest. Thermal runaway can 
be interpreted as the consequence of a temperature 
dependence of sufficient magnitude that the temperature 
rise necessary to cause the generated energy to be con- 
ducted to a surface and then removed by convection 
causes an increase in the generation rate, which is too 
large to be conducted and convected away. In [7], an 
interesting result occurs in which thermal runaway can 
be induced, or prevented, by varying the ambient tem- 
perature. The suggestion is that, if the occurrence or 
prevention of thermal runaway can be affected by vari- 
ation of the ambient temperature, then perhaps thermal 
runaway can be controlled through other external means, 
e.g., by the initial conditions and/or the boundary con- 
ditions of the problem. It is this issue that is addressed in 
this paper. Although we restrict our attention to a model 
problem concerning a heat generating fluid flowing 
through a pipe, we feel that several of the basic ideas 
we shall discuss are applicable to more general physical 
situations. For example, setting the fluid velocity equal 
to zero, we recover temperature solutions applicable to 
solids [2, 8-101. Thermal runaway is discussed in these 
references, but our results, presented below, include 
additional findings that are not discussed or recognized 
in the references cited. In addition, the systematic analysis 
and discussion of the model problem we shall present 
does not appear to have been addressed in the literature. 

In Section 2, we formulate the model problem we wish 
to consider and then, in Section 3, present the analytical 
solution for the case of constant ambient temperature. 
This solution is analyzed, and it is shown how thermal 
runaway can be prevented by requiring the initial con- 
dition to satisfy certain conditions. In Section 4, the ana- 
lytical solution for the case of a general, time varying, 
ambient temperature is presented and two special cases 
are analyzed in detail. Again, it is shown how thermal 

runaway can be controlled by requiring the ambient tem- 
perature to satisfy a certain set of conditions. In Section 
5, we consider the case of time dependent boundary con- 
ditions. The analytical solution for this case is presented 
and analyzed, and the conditions necessary to control 
thermal runaway are presented. In Sections 3-5, the 
results are illustrated with several examples. We discuss 
our results in Section 6. 

2. Model problem-Transient beat convection in a pipe 

We consider a heat generating fluid flowing through a 
pipe of length L which transfers heat through its surface 
with coefficient h to an ambient fluid at temperature 
6 = B,(T), where T denotes time (see Fig. 1). The heat 
generated in a small control volume of the fluid is 
assumed to be a linear function of the average tem- 
perature 0 of the volume, while the fluid velocity V is 
assumed to be uniform over the cross-section A of the 
pipe and constant along the length of the pipe. The tem- 
perature B,, at the entrance to the pipe and the tem- 
perature QL at the exit of the pipe are specified and are 
assumed to be constant over the cross-section of the pipe. 
The thermal conductivity k is assumed to be a constant. 
The initial temperature of the fluid is also specified. We 
wish to determine the transient, radially lumped, and 
axially distributed temperature ~9 of the fluid (i.e., the 
temperature is assumed to be uniform over a given cross- 
section and is a function only of time and the distance X 
along the pipe). 

The balance of thermal energy applied to a radially 
lumped and axially differential control volume yields 

Xi ;12A 

pcyT = kg +q+m(Q-8,) 

- 7. [U--B,(T)]--pcYg 
for 0 < X < L, T > T,,, with the boundary conditions 

19 = B0 at X= 0, 0 = L$, at X = L 

and the initial condition 0 = (D(x), when T = To. Here p 
and c are the (constant) density and specific heat of the 
fluid, respectively. The model we shall use of the heat 
source per unit volume is a simple linear function of 
temperature, namely, q+m(B-O,), where q and m are 
specified constants. Here q can be interpreted as the exter- 
nally imposed heating rate per unit volume at tem- 
perature f?,,, while m(O-0,) models the (linear) variation 
of the rate with the temperature difference 0-B,,. (We 
shall discuss this model further in Section 6.) The coor- 
dinate X is measured from the inlet of the pipe in the 
downstream direction, P is the periphery of the pipe, and 
Q(x) is the initial temperature distribution of the fluid in 
the pipe. 
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.L------+ 
Fig. 1. A sketch of the geometry of the model problem of flow through a pipe of finite length, with an indication of the coordinate 
system. 

To simplify notation, we let 0, be any convenient, non- 
zero constant reference temperature and define the non- 
dimensional quantities 

hPL2 B,(T) - 6+, 
Y2(0 =--g- 

eL-00 

Qr ’ U’=e,’ 

Then, in terms of these variables, the nondimensional 
temperature u satisfies 

au ah 
at a2 

-2or~+/h+y(t), o<x< 1, t > 0, (1) 

u = 0, at x = 0, U == u,, 

atx= 1, and u = 4(x), when t = 0. (2) 

We note that /I, and y, are proportional to the heat 
generation coefficients m and 4, respectively, and are each 
inversely proportional to k. Also, f12 is proportional to h, 
while y2 is proportional to both h and the temperature 
difference f3,( T) - B,,. The parameter 2a is the Peclet num- 
ber of the flow, and is a measure of the ratio of the axial 
enthalpy flow and the axial conduction. 

3. Constant ambient temperature 

We consider first the case when the ambient tem- 
perature 0, is a constant. Then y is a constant and the 
solution for u can be expressed as 

4% 4 = UI ‘Xf 2 gk(ofkw, 
k=, 

gk(t) = f + (g,(O)-- $>ed’. 

&(x) = e”“sin(knx), 1, = k2z2 +a2 -B, 

Qk = (Y--w)A,+Bu,& 

g,(O) = 2 
I 

1 
4(x)eeUXsin(kax)dx-u, -B, 

0 

A, = $$[I-(-l)‘ee”], 
k 

Bk E* 

@k +8)’ 

[(-l)k+‘ee”(2cc+fi+Lk)+2a]. (3) 

Here (fk(x)} are the eigenfunctions associated with equa- 
tion (1) and II, are the associated eigenvalues. 

We now make some observations about our solution 
u(x, t). To do this, we find it convenient to consider two 
cases, corresponding to whether or not all of the eigen- 
values (1,) are positive. 

Case 1: All of the eigenvalues ik are positive. 
In this case, u will approach a steady state solution, 

ups(x), at t -+ co. Here u,, is given by equation (3) with 
gk(t) replaced by the constant Qk/nk, and can also be 
expressed as 

u,,(x) = B sil(o,) { (Bu, + y)e”+ ‘) sin(m) 

+ ye""sin [o(l -x)] --y sin(w)} (4) 

where w = JB-‘. LX From the definition of ik in equation 
(3) we see that all of the eigenvalues will be positive as 
long as /I < a’+ rr2. (See Fig. 2 and also Section 6, where 
this condition is discussed further.) 
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Fig.2.Aplotofthecurves1,=k2r?+a*-_=O,fork= 1,2,3, 
with an indication of the regions of the Q-plane where there 
are exactly K negative eigenvalues, for K = 0, 1, 2, and 3. 

To illustrate this case, we let u, = 1, a = 1, /3 = 6, and 
y = 0, which implies that ;Lk > 0 for all k > 1. We then 
let q(x) = - 1 and plot u(x, 1) at several values of t in 
Fig. 3(a). The solution u,,(x) is also plotted. 

Case 2 : One or more of the eigenvalues are negative. 
This case will occur whenever /l > CX’ + k2x2, for some 

integer k. More specifically, suppose that 1, < 0 for 
l<k<K,whilei,>O,fork>K+l,whereKissome 
positive integer. (Here K is just the number of negative 
eigenvalues for the problem.) In this case, u will, in 
general, grow exponentially as t -+ co, i.e., thermal run- 
away will occur, and no steady state solution will be 
attained. (This is the situation discussed in [2, 81 and [lo] 
for the case when tl = 0.) This is due to the presence of 
the term in gk(t) proportional to e-‘k’, for 1 < k < K. 
However, even in this case, it is still possible, under cer- 
tain circumstances, for the steady state solution u,, to be 
attained. To see this, we note that the solution (3) will 
still approach the steady state solution u,, if the coefficient 
of e-‘k’ in gk(t) vanishes for 1 < k < K, i.e., if 

gk(0) - + = 0, 1 < k < K. 
k 

Using the definitions in equation (3), these requirements 
can be expressed as conditions on the form of the initial 
condition 4(x) as 

sin(krrx) dx = ck, (5) 

for 1 < k < K. 
As an example of these results, we consider the case 

whenK=l,Thus,1,<Oand1,>Ofork>K+1=2. 
Then, the constant initial temperature 

satisfies the condition (5) for k = 1. Here c, is defined by 
equation (6) with k = 1. In Figs. 3(b)-(d) we have plotted 
u(x, t) at various times for u, = 1, a = 1, b = 12, and 
y = 0 (which implies that K = 1, with 1, = rr2 - 11 < 0) 
and for 4(x) = 6 * @, with 6 = 1, 0.9, and 1.1, respec- 
tively. In this case, thermal runaway will occur for any 
value of 6 # 1, but it can be avoided if 6 = 1, i.e., if 

4(x) 5 4:. 
Other initial temperature profiles satisfying the con- 

dition (5) can be constructed in a straightforward 
manner. In particular, when K 2 1, it is possible to find 
rather general families of initial temperature distributions 
which satisfy the conditions (5) for 1 < k < K, provided 
that each member of the family contains at least K arbi- 
trary constants. For example, one such family is the set 
of all polynomials of degree at least K- 1. For example, 
when K = 2 the initial temperature 

d;(x) = f$(O) +#“X, (8) 

@“’ = 2 
c,B,-c,B, 

#I) = 2 c,A, -CIA, 
A,B,-A,B,’ A,BZ-A2B, ’ (9) 

where Ak and B, are defined in equation (3), satisfies 
conditions (5) fork = 1 and k = 2. 

More generally, we can construct an initial tem- 
perature profile 4*(x) that satisfies conditions (5) starting 
with any piece-wise continuous function $(x). In particu- 
lar, it is straightforward to verify that 

4*(x) = It/(x>+ i akeZX sin(knx), 
k=l 

ak = 2 ck - 
( I 

: $(x)ePX sin(knx) dx), k= 1,2 ,..., K, 

(10) 

satisfies the conditions (5), where ck is defined in equation 

(6). 

4. Time dependent ambient temperature 

We now generalize the problem of the previous section 
and allow 6, to be an arbitrary, specified function of time. 
(In [7], thermal runaway is induced by increasing the 
ambient temperature as a linear function of time.) Letting 
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Fig. 3. The transient temperature distribution u(x, t) (dashed lines) for several values of t, for: (a) CI = 1, /3 = 6, and y = 0 (which 
implies that all of the eigenvalues are positive) ; the constant initial temperature and the final steady state solution u,, are indicated by 
solid lines; (b) G( = 1, fl = 12, and y = 0 (which implies that K = 1, i.e. A, < 0 and Lk > 0 for k 2 2) ; the critical constant initial 
temperature q$ and the final steady state solution u,, are indicated by solid lines ; (c) same parameters as (b), except that the constant 
initial temperature is 0.9 s cp$, which is indicated by a solid line, while the critical constant initial temperature cp$ is indicated by a dotted 
line ; in this case, no steady state solution is attained and the solution grows exponentially ; (d) same parameters as (b), except that the 
constant initial temperature is 1.1 * cp$, which is indicated by a solid line, while the critical constant initial temperature q$ is indicated 
by a dotted line ; as in (~11, the magnitude of the solution grows exponentially. 
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y = y(t) be a (specified) function of time, the solution for 
u can be written as 

gk(t) = Ak 
s 
’ y(r)eik(Tp’) dz. (12) 
II 

Here Qk is just Qk, defined in equation (3), with y = 0, 
while gk(0) and&(x) are defined in equation (3). For this 
case, the behavior of each g,(t), and, hence, the behavior 
of u(x, t), as t -+ co, will depend on the behavior of &k(t) 
as t + co. Instead of stating general conditions under 
which c&(t) will behave in some particular manner, we 
find it more instructive to look at two specific examples. 

4.1. Ambient temperature is apolynomialfinction of time 

First, we let y(t) be a polynomial function of time and 
write 

y(t) = 2 y’“’ et”, 
n=O 

where N is a nonnegative integer and each y(“) is a 
constant. Using equation (12), for this case we find 

(13) 

where Qp’ is just Qk, defined in equation (3), withy = y(O). 

Case 1: All of the eigenvalues I, are positive. 
Then u will approach the solution 

N 

24, (x, t) = c v(“)(x) * t” )  

n=o 

as t -+ co. Here v(“)(x) is just the coefficient of r in equa- 
tion (11) when gk(t) is replaced by the right side of equa- 
tion (13), with the term proportional to e&k’ set equal to 
zero. In this case, the magnitude of u will eventually grow 
as a polynomial function of time. For example, for N = 1, 
y(t) zz y(O) + y(‘) * t and we find that v’“‘(x) is given by equa- 
tion (11) with gk(t) replaced by the constant 
(Q~“)/&-A,$‘)/L:), while v(‘)(x) is given by equation 
(11) with u, = 0 and gk(t) replaced by the constant 
(&+“l&). 

Case 2 : One or more of the eigenvalues are negative. 
In this case, u will, in general, grow exponentially as 

t --f 00, i.e., thermal run-away will occur. However, even 

in this case, it is possible, under certain circumstances, 
for the solution to grow as (only) a polynomial function 
of time and not, in particular, to grow exponentially with 
time. To see this, suppose that Ak < 0 for 1 < k < K, 
while Ak > 0, for k > K+ 1. Then the solution (11) will 
not grow exponentially in time if the coefficient of e-“k’ 
in gk(t) vanishes for 1 < k < K, i.e., if 

gk(0)- if! +Ak 2 (- ‘)“++$‘” = 0, 

1;” 
k= 1,2 ,..., K. 

n=l 

(14) 

The conditions (14) are a system of K linear constraints 
that must be satisfied by the N parameters (coefficeints) 
{y(“‘}. For example, if we set N = K, they become a sys- 
tem of K linear algebraic equations for the parameters 
{y”‘, . . . ) ycx?}. Thus, if the conditions (14) are satisfied, u 
will again approach the solution u, as t -+ 00. 

To illustrate this possibility, in Figs. 4(a) and (b) we 
have plotted u(x, t) as a function of time for several values 
of x, for 4(x) = 0, u, = 1, tl = 1, /l = 13, N = 1, and 
y(O) = 1. (Here K = 1, since A, < 0 and I, > 0 for k > 2.) 
In Fig. 4(a), we have set 

Y (‘1 = +I)* S _ $,(()_Q(“‘:i,); (15) 
I 

as determined from equation (14) with N = K = 1. In 
this case, although there is a negative eigenvalue, the 
solution grows as (only) a linear function of time. In Fig. 
4(b), we have used the same parameter values as in Fig. 
4(a), except that y(l) = 0.95 * y(‘)*. In this case, the solu- 
tion eventually grows exponentially with time. 

4.2. Ambient temperature is a periodic junction of time 

Second, we let y(t) be of the form 

y(t) = a0 + 2 a, sin(q), 
j=l 

(16) 

where each aj and CD, is an arbitrary constant. For this 
case, we find 

gk(t) = y + ( gk(0)- $? +A, f a e-“G 
k ,=Ii,2+w~~ > 

+Ak f aj* 
j= 1 

where Qp) is now given by Qk in equation (3), with 
y = a,. 

Case I : All of the eigenvalues 1, are positive. 
In this case, u will approach the bounded, time varying 

solution 6(x, t), given from equations (11) and (17) by 



J. Geer, J. Fillo/Int. J. Heat Transfer 41 (1998) 2979-2990 2985 

(4 

2.5 

(‘4 

0 1 2 3 4 5' 

t 

Fig. 4. The transient temperature distribution u(x, f), when the ambient temperature is a linear function of time [(a) and (b)] and when 
the ambient temperature is a sinusoidal function of time (c), plotted as a function of t for x = l/4 (dotted line), x = l/2 (solid line), 
andx=3/4(dashedline).In(a)and(b),u, = l,+(x)=O,c1= 1,/I= 13,andy (‘) = 1 (which implies that K = 1, i.e., A, < 0 and I, > 0 
fork > 2). In (a), y(l) = y(r)* [f rom equation (15)] and the magnitude of u eventually grows linearly with time; in (b), y”’ = 0.95 *y(r)* 
and the magnitude of u (eventually grows exponentially with time. In (c), ur = 1, d(x) = 0, c( = 1, 1 = rr2+2 (which implies that K = 1, 
i.e., I, = - 1 and E., > 0 for k > 2), and a, = 0, while a, and w1 are determined from equation (22) with 6 = l/2. In this case, u 
eventually approaches the (bounded) periodic solution zi(x, t), as t + co. 

1, sin(wjt) -wj cos(w,t) 

Case 2 : One or more of the eigenvalues are negative. 

Let&<O,for 1 <k<K,with&>O,fork2K+l. 
In this case, u will, in general, grow exp.onentially as 
t -+ co, i.e., thermal runaway will occur. However, even 
in this case, it is still possible for u to approach 2(x, t), as 
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t -+ co, if the coefficient of e-‘k’ in gL(t) vanishes for 
1 < k ,< K, i.e., if 

0, k=1,2 ,..., K. 

(18) 
These conditions can, in turn, be satisfied by properly 
choosing the parameters N, {u,}, and {w,}. For example, 
setting N = K and letting each W, be a convenient, non- 
zero constant, we can write the conditions (18) as 

pLu,=- gk(0)-Qi”)/~~k 
,=I g+w,2 A, 

, k=1,2 ,..., K, 

(19) 

which is just a system of K linear, algebraic equations for 
the K amplitudes (u,}. Alternatively, if we specify the 
amplitudes {u,}, then equation (19) are a system of (non- 
linear) equations for the K frequencies {o,). 

To illustrate these results, we set d(x) = 0, u, = 1, 
a=l,~=~2+2,anda,,=0,whichimpliesthatK=l, 
with 2, = - 1 and & > 0, for k > 2. Then equation (19) 
becomes 

UlWl 1+7? 

1+w: l+e (20) 

This equation can be satisfied by letting w, be any con- 
venient, non-zero constant and then solving for a, as 

1-w: I+712 
al=-P*P l+e ’ WI zo, arbitrary. (21) 

ml 

Alternatively, we can set a, = -2( I+ n*)/[6(1 +e)], 
where 0 < 161 < 1, and then solve equation (20) for w, as 

w, = 
l&-$X 2(1 +7c2) 

6 ’ a’ = - 6(1$-e) ’ 

where0 < 161 < 1. (22) 

In Fig. 4(c) we have plotted u(x, t) as a function oft for 
several values of x, with w, and a, determined by equation 

(22) with 6 = l/2, i.e., 0, = 2+$ and 
a, = -4(l +n2)/(l+e) e -11.69. In this case, 
u -+ Q(x, t), as t + co. 

5. Time dependent boundary conditions 

In many practical problems, time dependent boundary 
conditions play an important role. For example, they are 
of importance in cases involving the flow and heat trans- 
fer associated with vibrating components of a variety of 
mechanical systems, such as reciprocating engines. Thus, 
we now generalize our model problem by allowing the 
boundary conditions to vary with time. For simplicity, let 
0, (and, hence, 7) be a constant. Thus, in nondimensional 
form, we consider the problem 

au a2u -= - -2Kg +pu+;‘, 
at &’ -+* 

O<x<l, t>o, (23) 

u = Uo(t), at x = 0, u = U,(t), at x = 1 

and u = 4(x) when t = 0. (24) 

Here Uo(t) and U,(t) are specified (smooth) functions of 
time. 

For this case, the solution for u can be expressed as 

n(-x, t) = (1 --y)U,,(t)+-x-l/, (t)+ i gk(t).fk(-x), (25) 
i=I 

where {fk(x)} are defined in equation (3), and gk(t) is 
now given by 

gk(t) = e-Q gk(0) 

f-h $eQ- 1) + U,(O) - Uo(t)eQ 

+(p+2a+j”k)G0,k(t)-21G,,k(t) 1 
+(Uo(t)-U,(t))e’~‘-Uo(0)+u,(O)l , I (26) 

gk(0) = 2 
i 

’ eP”4(x) sin(knx) dx 
0 

-AkuO(O)-Bk[U,(O)-u0(0)1. 

Here we have defined 

C,.k(Q = 
s 

U,(z)e’kT dz, j = 1,2, (27) 
0 

for k = 1,2,. , while Akr A,, and B, are defined in equa- 
tion (3). 

As an example of these results, we consider the special 
case when 

U,(t) = i u, sin(wjt), U,(r) = 1 + r/o(t), (28) 
,= I 

where the amplitudes {a,} and the frequencies {wj} are 
arbitrary constants, and N is an arbitrary positive integer. 
Using equations (26)-(28), we find 

gktt) 

u,(P+3’k)W, cos(w,t) 
2a-y _ 

> 1 - /1 , 
.k 

(29) 

where 
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s 1 

gkm = 2 eeUX$(x:l sin(knx) dx-B,. (30) 
0 

Case 1: All of the eigenvalues lk are positive. 
Then u will approach a ‘steady’, i.e., bounded, solution 

as t -+ co, given by equation (25) with g,,(t) defined by 
the right side of equation (29), with the term e-i’ set 
equal to zero. 

Case 2 : One or more qf the eigenvalues are negative. 
In this case, u will, in general, grow exponentially as 

t + co, i.e., thermal runaway will occur, and no bounded 
solution will be attained. However, even in this case, it 
is again possible, u:nder certain circumstances, for a 
‘steady’, or bounded, time varying, solution to be 
attained. To see this, suppose that 1, < 0 for 1 < k < K, 
while 1, > 0, for k > K+ 1. Then the solution (25) will 
approach a steady solution, if the coefficient of e-‘k’ in 
gk(t) in equation (29) vanishes for 1 d k < K, i.e., if 

k=1,2 ,..., K. (31) 

These equations can be satisfied, for example, by setting 
N = K, setting each CD\ to a convenient constant, and then 
solving the resulting K linear equations (31) for the K 
unknown amplitudes a,, . . . , uK. Alternatively, equation 
(31) can be satisfied by selecting convenient values for the 
amplitudes {aj} and then solving the resulting nonlinear 
equations for the frequencies {wj} (provided, of course, 
that such solutions exist). 

As an application of these results, we again consider 
the case when K = 1 ((i.e., when there is just one negative 
eigenvalue) and we set N = 1 in equation (31). Then the 
condition on a, and CD, becomes 

SIW~B, +A, ( aI @+&h 2c(-y 
- ___ =O. 

I 3,: +uJ: + 1, > 
(32) 

If we assume that the initial condition for u is specified, 
then g, (0) is known [see equation (30)] and equation (32) 
can be solved for either a, or w1 in terms of the other 
parameter. As an example of this case, we let 4(x) = 0, 
CC= 1, p=7?+2, and y =O. Then K= 1, with 
1, = n*+c?--_B = - 1, and 1, > 0 fork > 2. In this case, 
equation (32) reduces, to 

alwl 

1+0: 

1 

l+e’ 
(33) 

For an arbitrary value of w, # 0, we can solve equation 
(33) for a, and find 

1+w: 
“=--w, 

011 # 0, arbitrary. (34) 

Alternatively, we can set a, = - (Z/S)[l/(l +e)], where 

6 is any real number satisfying 0 < 161 < 1, and solve 
equation (33) for w, to find 

w, = 
1+-t 

6 ’ 

with a,=-;*&. 0<]61<1. (35) 

Thus, with a, and w, determined by either equation (34) 
or equation (35) the condition (32) is satisfied for this 
case, and, hence, u will approach a bounded (periodic) 
solution as t + co. 

To illustrate these results, in Fig. 5(a) we have plotted 
u as a function of t for several values of x, with w, = 2 
and a, determined from equation (34) as 
-5/[2(1+e)] A -0.672. If we set 6 = l/2 in equation 
(35) and then set w, = 2+$ & 3.732, with 
a, = -4/(1 +e) G - 1.076, the resulting expressions for 
u produce graphs very similar to those in Fig. 5(a). In 
particular, in both of these cases u approaches a bounded 
(periodic) solution as t + co. In Figs. S(b) and (c), we 
have used S=1/2 in equation (35) and 
a, = - 4/( 1 + e) G - 1.076, but we have modified the fre- 
quency slightly to o, = (1 T0.02) +(2+4). In each of 
these cases, no bounded solution is approached and ther- 
mal runaway is present. 

6. Discussion 

For the case of constant, prescribed boundary tem- 
peratures I!?~ and 8,, and constant ambient temperature 
8,, we have established mathematically that steady-state 
temperature solutions to the energy equation [equation 
(l)] can be obtained. Here an examination of the eigen- 
value problem associated with equation (1) is instructive, 
in order to emphasize when, in general, a steady state 
solution is achieved, and when it is not. As discussed in 
the text, if all of the eigenvalues 1, = k*n* + d-B are 
positive, which will be the case as long as /I < a’+ rc2, the 
temperature u will approach a steady state solution as 
t -+ co [see, e.g., Fig. 3(a)]. If one or more of the eig- 
envalues are negative, i.e., if fl > Cr*+k*z* for some 
integer k, then u will, in general, grow exponentially as 
t + co, i.e., thermal runaway will occur. On the other 
hand, we have also shown that steady state temperature 
solutions to the energy equation can be obtained, even 
when the presence of one or more negative eigenvalues 
would indicate that thermal runaway should occur. In 
this case, thermal runaway can be circumvented by a 
judicious selection of initial conditions. Equations (5) 
express the conditions that the initial condition must 
satisfy in order for a (bounded) steady-state temperature 
solution to be attained for an otherwise unbounded prob- 
lem. This is in contrast to most problems that have been 
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Fig. 5. (a) The transient temperature distribution u(x, t), when the boundary conditions are ~(0, t) = a, sin(o,t) and ~(1, t) = 1 +a, 
sin(o,t), plotted as a function of t for x = l/4 (dotted line), x = l/2 (solid line), and x = 3/4 (dashed line). Here 4(x) = 0, c( = 1, 
y = 0 and j3 = n*+2, which implies that K = 1, i.e., A, = - 1 and I, > 0 fork > 2. In (a), w, = 2 and a, = - 5/[2(1 +e)] and u eventually 
approaches a (bounded) periodic solution as t + co. In (b), w, = 0.98~T, where o, - * - 2+3 and a, = -4/(1 +e) are obtained from 
equation (35) with 6 = l/2. In this case, the magnitude of u eventually grows exponentially as t -P co. In (c), the same parameters are 
used as in (b), except that w, = 1.0207 and u again grows exponentially as t + cc. 

studied in the past, namely, problems for which the initial 
condition is an arbitrary, prescribed constant. For 
specific parameter values such that just the first eigen- 
value is negative, Figs. 3(b)-(d) depict the control and the 
delayed control of thermal runaway, through a judicious 
choice of the initial condition. 

Figure 2 depicts the eigenvalue space, delineating the 
regions where we can expect positive and negative eigen- 

values in terms of a and /I. Here the parameter 2a is the 
Peclet number and is a measure of the ratio of the fluid 
advection in the flow direction to conduction in the axial 
direction, whereas /I is a measure of the difference or 
balance between the temperature dependent portions of 
the heat source and heat removal by convection. Physi- 
cally, if the flow is from left to right (Fig. I), then TV is 
positive, whereas a negative value of CI would imply flow 
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in the opposite direction. Axial conduction is negligible 
in comparison with radial conduction for flow inside a 
tube if the Peclet ntrmber is about 100. Since our par- 
ameter a is the usual F’eclet number divided by 2, a should 
be less than 50 for axial conduction to be important. 

Using the definitions of a and /?, the condition that all 
of the eigenvalues are positive (and hence that there is 
no chance for thermal runaway to occur) leads to the 
requirement that 

m<g+ pc ‘V2 

0 

n2k 
A 2 k+L’. 

Physically, this relates the coefficient m of the temperature 
dependent portion 0-r the heat source to heat removal, 
through the heat transfer coefficient h and the speed V of 
the fluid. This has implications for any proposed exper- 
iment. 

In Fig. 2, the lowest dashed curve (just above ‘K = O’, 
where K denotes the number of negative eigenvalues) 
places limits on values of a and /I for which there are no 
negative eigenvalues. For values of a and /? below this 
dashed line, the eigenvalues are all positive. For values 
of a and /3 which lie in the region denoted by K = 1 (i.e., 
the region between the two lowest dashed lines), there is 
exactly one negative eigenvalue. Similar interpretations 
can be given to the regions between the other dashed lines 
in the figure. 

Setting a = 0, our results are applicable to a solid. For 
this case, there is a much more restrictive range of 1 
values which will result in positive eigenvalues (see Fig. 
2). Thus, the motion of the fluid (a # 0) implies that 
larger values of b can be tolerated, i.e., larger than those 
permitted for a solid, before negative eigenvalues will 
appear. In essence, for a fixed surface area, fluid flow 
enhances heat transfer from the system, thereby allowing 
larger internally generated heating rates relative to those 
allowed for a solid. 

While it is tempting to claim that thermal runaway can 
be prevented by proper adjustment of the initial 
condition, a more realistic assessment of the situation is 
that, if the ‘prevention criteria’ expressed by equations 
(5), (14), (18), or (.31) are not satisfied exactly, then 
the onset of thermal runaway will be delayed, but not 
prevented. This is demonstrated in Figs. 3(c), (d), 4(b), 
S(b) and (c). 

It is of special interest to compare some of our analysis 
and results with thos#e presented in [2]. While [2] inves- 
tigates the transient temperature distribution in a dielec- 
tric in an alternating electric field, and our analysis is for 
a fluid, the issues raised are worth reviewing, particularly 
in relation to the models used for the heat source. For 
many solid dielectrics, the rate of generation of heat, Q, 
in an alternating electric field increases approximately 
exponentially with the temperature, i.e., 

Q = Qexp = C-e’*, 

where C > 0 and E > 0 are specified constants. For such 
materials, both the condition for a steady state tem- 
perature distribution to exist, as well as the condition for 
which thermal instability will occur, are of interest and 
importance. When the exponential model of heat gen- 
eration is used, it is possible for an ultimate catastrophic 
rise in temperature to occur, which will lead to break- 
down, and this was clearly demonstrated in [2]. (Here 
by a ‘catastrophic rise of temperature’ we mean that, 
mathematically, the temperature becomes infinite after 
only a finite length of time.) The linear model of heat 
generation we are using can be related to the exponential 
model by 

Q = Qlinear = q+m*(~-~,), 
q = C - &o , m = .s*C*e”o, 

which is illustrated in Fig. 6. Thus, we can think of our 
model as a linear approximation to the exponential model 
for values of 0 near BO. The linear analysis we have per- 
formed has established conditions under which the tem- 
perature will grow exponentially with time. However, this 
type of ‘instability’ is very different from the catastrophic 
breakdown predicted by the exponential heat source 
model. Since Q,,“,,, < Qexp (see Fig. 13), we can show 
mathematically that the temperature predicted by our 
linear rnodel provides a lower bound for the temperature 
corresponding to the exponential model. However, with 
either heat source model, thermal runaway, i.e., an 
unbounded temperature rise, is predicted. Some details 
of the difference in temperature rise using the two models 
is discussed in [2]. 

4. 

Exponential Model 

Fig. 6. A comparison of an exponential model Qexp and a linear 

model QI~~,., of the temperature dependent rate of heat gen- 
eration Q. The value and slope of the linear model agrees with 
the exponential model at 0 = 19,. 
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We have also illustrated how the prevention or delay 
of thermal runaway can be accomplished by means other 
than through the initial conditions, namely, by a proper 
adjustment of either the time varying ambient tem- 
perature or the time varying boundary conditions. For 
example, the investigation of solutions to equation (1) 
with either a sinusoidally varying ambient temperature 
or sinusoidally varying boundary conditions indicates 
that, by properly adjusting either the frequencies or 
amplitudes of these terms so that the conditions (18) or 
(3 1) are satisfied, then ‘steady’, bounded solutions can be 
achieved, in spite of the fact that the eigenvalue problem 
would indicate otherwise. In particular, Figs. 4(c) and 
5(a) illustrate the steady, bounded solutions that can 
be achieved for the proper selections of amplitude and 
frequency, whereas Figs. 5(b) and 5(c) illustrate that a 
slight departure of the frequency of amplitude from these 
conditions produces no bounded solution, and thermal 
runaway is present. 
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